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The Navier-Stokes equations for a two-layer flow are written in a curvilinear system 
of co-ordinates in which the height is measured from the interface. A technique for 
averaging the equations over an ensemble of wave surfaces which are not very different 
from each other is proposed. Moments which include deviations in the rate of surface 
displacement and in the slopes are dropped. It is assumed that the averaged equations 
describe the evolution of a large-scale velocity field. The moments of the turbulent 
velocity field are parameterized using the isotropic coefficient of turbulent viscosity, 
which, from dimensional considerations, is expressed in terms of the length scale 
growing linearly upwards and downwards from the interface and the turbulent 
kinetic energy. The equation defining the evolution of turbulent energy is derived 
without allowing for the curvilinearity of the system of co-ordinates. Laboratory 
experiments in a wind-water tunnel are simulated by integrating the equations 
numerically. The results are compared with measurements. 

1. Introduction 
Wind waves are one of the most thoroughly studied natural hydrodynamic pheno- 

mena. They are adequately covered by experimental data and in many x a p  have 
been effectively simulated for laboratory conditions. The theory of wind waves is a 
highly developed division of geophysical fluid dynamics and the theories relevant to 
the generation and growth of waves presented by Phillips (1957) and Miles (1957) are 
its most important results. These theories give a clear qualitative interpretation of 
the mechanisms of wave energy exchange and are in satisfactory agreement with 
experimental data (Barnett & Kenyon 1975). Certainly, these two theoretical studies 
and subsequent results of this kind have been obtained using a number of simplifica- 
tions of which the most significant is the assumption that the amplitudes are small. 
I n  certain respects, this assumption immediately leads to contradictions. For example, 
in many interesting cases, the height of the critical layer appears to be smaller than 
the wave height. I n  such situations the mechanism of wave energy exchange acts 
somewhere between the trough and crest of a finite amplitude wave. Rejection of the 
hypothesis of small amplitudes imposes a restriction on the applicability of analytical 
studies, so that numerical simulation remains the most effective tool available. 

Numerical simulation has recently led to remarkable progress in many divisions 
of geophysical fluid dynamics. Indeed it seems astonishing that numerical solution of 
the complete equations has not been applied to  the simulation of wind-wave inter- 
action. The reason for this becomes clear, however, as one goes deeper into the subject 
because there appear to be many obstacles involved in constructing a mathematical 
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model which describes this phenomenon. Most important of these is certainly the 
ambiguity arising in an attempt to  average the equations of motion for a two-layer 
turbulent fluid. This procedure requires parameterization of the inner turbulence and 
'interface turbulence' and the way to  do this is not obvious. I n  particular, it seems 
to be very difficult to include the mechanisms of resonant interaction (Phillips 1957). 

This paper is concerned with one of the possible averaging procedures. Another 
problem which requires solution is how to select a way t o  close the equations, i.e. 
parameterize the inner turbulence and 'interface turbulence '. To date, there seems 
to  be no reason to prefer any particular method, therefore here, as in Gent & Taylor 
(1 976)) the simplest method has been chosen, that based on the equation of turbulent 
energy balance. It appears that the general approach involving the solution to the 
complete equations may subsequently reveal which of the methods is the best. 

The numerical results given in this paper are relevant to  the case of two-dimensional 
waves. This approximation is satisfactory for many laboratory experiments. Simula- 
tion of a real, three-dimensional flow is not difficult in principle, but requires a com- 
puter with a very large capacity. The difficulties in constructing a good numerical 
scheme which permits simulation of the accumulation of energy in waves may be not 
of primary importance but they could be a significant obstacle to  a direct numerical 
simulation. I n  any case, the computational effort required in this problem may be too 
great for present-day machines. 

The purpose of this paper is to  discuss an approach to the mathematical simulation 
of the water-air layer involved in wind-wave interaction (see also Chalikov 1976). 

2. The basic equations: the 6 co-ordinate 
The main difficulty in deriving the dynamic equations for a medium involving a 

density discontinuity across a surface is that averaging is impossible in an Eulerian 
system of co-ordinates. This difficulty vanishes if the vertical co-ordinate [is measured 
from the interface rather than a fixed level, i.e. 

6 =  2-73 (1) 

where z is the height relative to the mean level and 7 is the elevation. I n  terms of g ,  
the Navier-Stokes equations take the form 

~t + (uu),  + (vu) ,  + (WU - T ~ U  - ~ , U U  - T , U W ) ~  = -p-'P, +p-lqSPg+ VAU, 

Ot + (uv), + (vv),  + (UV - Ttv - ~ , U V  - 7,vv)c 1 -p-'P' +p-lq,P, + VAV, 

ZC't + (uu'), + (zw), + (WW - 7 t ~ ~ j  - ~ , U W  - ~ y ~ ~ ~ ) ~  = -p-'Pc + g + VAW, 

( 2 ~ )  

( 2 b )  

( 2 ~ )  

u , + v y + ( E ( ~ - ~ z U - ~ y o ) g  = 0, ( 2 4  
where U ,  v and ZL' are the longitudinal (x), transverse (y) and vertical (5) velocity 
components, p is the density (p  = pa, the air density, in 5 > 0 and p = pw, the water 
density, in 5 < O),  v is the molecular viscosity, P is the pressure and A is the Laplacian 
in the co-ordinate system (x, y, 6). The following kinematic condition is added to (2): 

ht = t('0 - U0 7, - V0 T,, (3) 

where u,,, v,, and w,, are the velocity components at the surface 5 = 0. Equation (3) 
indicates that there is no mass, momentum or energy exchange through the inter- 
face due to  advective terms: on the left-hand sides of (2a-d) the groups of terms 
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differentiated with respect t o  5 reduce to  zero. It follows that the energy and 
momentum fluxes through the interface are effected by the forces due to pressure 
and viscosity alone. Note that, if the continuity of the interface is violated, (3) is 
inapplicable and the two media can exchange finite volumes in the form of air bubbles 
and spray. This may take place when the interface becomes unstable. The transition 
to instability is identical to that for laminar flow because in both cases molecular 
exchange is replaced by the exchange of finite volumes. 

3. Averaging of the equations: the wind-wave interaction layer 
I n  terms of 5, particles with equal heights always belong to the same medium, so 

that formally no difficulties arise a t  the interface. Consider a certain horizontal scale 
I, and separate the spectrum of perturbations into large-scale components with hori- 
zontal scales h > I, and small-scale components h < I,. The problem consists of con- 
structing equations which describe the motions with scales h > I, but allow for the 
statistical influence which the small-scale components exert on them. When applied 
to numerical realization of the model when 1, is identified with one or several steps of 
the finite-difference grid, the method of calculating the effects of small-scale motions 
on terms describing explicitly the influence of large-scale motions forms the so-called 
problem of subgrid-effect parameterization. With respect to  the variable ~ ( z ,  y, t ) ,  
the scale separates out waves with horizontal dimensions h > I, ,  whose motion is 
defined by averaged equations. Where the waves have length h < I,, their heights, 
from a priori considerations or experimental data, may be assigned an approximate 
value h,. The value of h, may be estimated more satisfactorily if I, is sufficiently small 
and the subgrid waves belong to the high frequency subrange where universal laws 
hold with some accuracy for the elevation and slope spectra. It is not difficult to 
establish from dimensional considerations that if I, lies in the inertial range, then h, 
is directly proportional to  1, and is independent of time and the spatial co-ordinates. 

We now define the ensemble which will be used in averaging. Consider a domain G 
whose horizontal dimensions are larger than the maximum length ofa wave and which 
is bounded above by the surface 5 = H, and below by the surface 5 = - H,. Here H, 
is higher than the levels where it is possible to trace the velocity and pressure pertur- 
bation fields propagating away from the surface. The observations appear to indicate 
that H, may be taken equal to several heights of the maximum wave. Nevertheless, 
we shall assume that the lower and upper boundaries both lie a t  a distance of one 
maximum wavelength from the interface. We shall call the layer bounded by the 
surfaces 5 = H, and 5 = - H ,  the wind-wave interaction layer. 

Examine the set of realizations of a two-layer turbulent flow in the region C? for 
similar external conditions (such as the time of occurrence, the mean-wind direction 
and the velocity beyond the layer of wind-wave interaction). To collect an ensemble 
of realizations to be used in averaging, i t  will be necessary that, for any two repre- 
sentatives of this ensemble I and TI, the surfaces yI(x, y) and rII(x, y) coincide with 
each other to within a distance h,: 

max I T d G  Y) - ?IIl(X> Y)I 5 h,% (4) 

where, as specified above, h, is consistant with 1,. Let U, W, ?j and 
averaged quantities and u', ui', 7' and P' their variations. It is natural that c, 

be the ensemble- 
and 
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should describe the effect of a smoothed wave surface i j  whereas u’, w‘ and P’ should 
correspond to the deviations due to (i) the turbulence in the internal velocity field 
and (ii) the high frequency components 7‘ with scales h < 1,. It should be emphasized 
that the averaging is performed with respect to t;, i.e. over heights equi-distant from 
the interface. Averaging is also performed with respect to the vertical co-ordinate, 
with the result that €or the averaged set of equations the height is measured from a 
smoothed surface. The method of averaging proposed here is, in effect, close to y- 
averaging (along the crests of two-dimensional waves) or phase averaging, but it 
takes into account the three-dimensional perturbations and the presence of a wave 
spectrum. We shall call this method G-averaging for brevity. 

To reduce the computational effort, we shall suppose that the perturbations are 
quasi-two-dimensional. This means that three-dimensionality occurs on the small 
scales h < 1, alone. Let the direction of motion of these two-dimensional perturbations 
coincide with the mean-wind direction beyond the wind-wav e interaction layer. Let 
the x axis be parallel to this mean wind and assume that all probability distribution 
functions for the deviations u‘, w’, p‘ and 7’ are invariant with respect to shear and 
reflexion along the y axis. After averaging, the equations will take the form 

- 
Ut + (uu + uIul)x + (WU + wlul- i j t  u - r,uu - r,u&T)c = - p-’P, + p - q z  Pc + Mu, ( 5  a) 

.u, + (W - i jxZ - &ul), = 0, 

ijt = Go - Zo?j, - u;?j$, 

- - - - 
Wt + (UW + u’w’)~ + (WW + W’W’ - ijtW - ?jxEiE - i j , ~ ’ ~ ’ ) t ;  = -p-’Pc + g + M,, ( 5  b )  

- 
( 5 4  

( 5 4  
.__ 

where the terms defining the molecular viscosity have been omitted. Mu and M, 
indicate the sums of the second and third moments including 7; or 7;. These moments, 
as well as the last terms on the left-hand sides of (5u-c), may be considered to decrease 
with increasing distance from the surface just as two-point moments decrease with 
increasing distance between the points. The rate of their reduction depends on the 
spectral radius of correlation R,, which may be determined from the discretization 
scales 1, and h,. Since I, and h, are taken to be small, it is possible to assume that the 
layer wherein Mu and M, make a significant contribution is rather thin. It appears 
that, as in the case of large-scale components, the perturbations due to high frequency 
waves are attenuated a t  a height several times the height cf these waves for 5 > 0 
and a t  a depth of order 1, for 5 < 0. The difference between the attenuation rates 
above and below the interface may be due to the fact that in the air intensive turbu- 
lence blurs the surface-generated perturbations, whereas in the water the motion is 
nearly potential and turbulent energy is appreciably smaller (unless intensive wave 
breaking occurs). To date, no experimental data are available for estimating the 
radius of correlation R,. 

We note that a layer wherein the velocity and pressure fields are correlated with 
the surface slope also occurs above an ordinary rough surface in the vicinit) of the 
roughness elements. Henceforth it will be assumed that the high frequency surface- 
generated perturbations affect the flow in the same way as surface elements. These 
perturbations will thus be taken into account in formulating the resistance law. 

The depth of the layer of interaction with waves of length h < 1, can be roughly 
estimated in the following manner. Let the spectrum of elevations at  high frequencies 
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be described by Phillips’ (1  958) formula X(w) = P g 2 ~ - ~  and the spectrum of slopes by 
the formula X’(w) = aw-l (Phillips 1966, p. 109). Then, assuming that 

it is possible to estimate the minimum frequency w, and typical height of the waves 
which are not taken into account explicitly: 

W, N (27~)*(/I /a)4g*l~*,  h, N (477)-’~~4Z,,. (6) 

If the horizontal scale of discretization 1, is taken to  be 10 cm, then i t  follows from (6) 
that, for p = 0.5 x 10-2 and a = 0.8 x 10-2 (Kitaigorodsky 1970, p. 200), wr N 25s-‘ 
and h, - 0.5 cm. I n  this case, the depth h, of the layer wherein the terms Mu and M, 
may be significant appears to  be several centimetres. This permits the assumption 
that for simulating the dynamic structure of the interaction layer the terms Mu and 
M, are insignificant everywhere except in a bhin layer near the surface. This layer 
will be described later in this paper. 

The height of propagation of the perturbations due to waves of frequency w < w, 
increases as w decreases and may be appreciably larger than h,, but these pertur- 
bations are then described explicitly by (5). I n  principle, for waves of any frequency 
it is possible to  find the heights < where the correlation of the velocity and pressure 
fields with the surface slopes becomes negligibly small. I n  particular, < = Ha and 
< = -Hw are defined as levels a t  which this correlation is zero for all perturbation 
frequencies. Beyond the layer of interaction, there exists a simple relationship be- 
tween single-point moments calculated in the < and usual co-ordinates respectively: 

where m is any single-point moment a t  a height z, % is the same moment a t  
p(7) is the probability distribution function of surface elevations. 

tween z and < may be neglected beyond the layer of interaction. 

and 

It follows from ( 7 )  that if m changes slowly enough with height the difference be- 

4. Parameterization of the subgrid processes 
For the ultimate formulation of the problem, the system (5) must be closed. Later 

we shall present the closure used in the calculations. This may not be the best scheme 
because it was selected under the restriction that the computing time required 
should be acceptable. 

Turbulence 
The second-order single-point moments can be parameterized in terms of the defor- 
mation tensor of the mean velocity field and bhe coefficient of turbulent viscosity k, 
which is expressed in terms of the kinetic turbulent energy e = & ( u ’ ~ + v ’ ~ + w ‘ ~ )  and 
the turbulence scale 1 using the hypothesis 

- - -  

k = (e/c)hZ. (8) 
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FIGURE 1. Diagram explaining the process of wave breaking. v C  is the surface slope before 
breaking while 7; is that after wave breaking. The displacing volume is shaded. The arrow 
shows the direction of displacement. 

As the simplest assumption, I can be taken to be isotropic and growing linearly with 
increasing distance from the interface: 

( K  = 0.4 is the von K&rm&n constant). To effect system closure with 5 defined as in 
( l ) ,  a standard technique is used to derive an equation of turbulent energy evolution 
(Monin & Yaglom 1971, chap. 3). The technique used to describe turbulence in the 
model presented below was appreciably simplified [see (S)]. 

Decreasing potential energy 

The foregoing discussion of the moments which include derivatives of the deviation 
in the surface level is certainly inapplicable to the value the moment uiqk at the 
surface itself. This term describes the effect of high frequency variations on low fre- 
quency variations. It is possible to assume that at  least at  high frequencies w > w, 
potential energy flows more effectively from low to high frequencies than vice versa. 
From the point of view of energetics, this effect produces a non-reversible decrease 
in the potential energy of the individual perturbation components. For sufficiently 
well developed perturbations this decrease may appear as wave breaking. A suitable 
differential form for the term uhql might be k,?jSx, where k,  is a smoothing coefficient. 
A defect in this form is its low selectivity with respect to surface slopes. The smoothing, 
apparently, must act on sufficiently large slopes and be absent altogether for small 
slopes. This defect can be rectified by making k,  increase with ?jx .  The simplest method 
of parameterizing wave breaking which is suitable for numerical simulation is to 
prevent the inception of an excessively large local steepness 7,. It is supposed that, 
once the steepness exceeds some critical value 75, the supercritical volume of fluid 
breaks in the direction of the reduction in level (figure 1) and all the rising potential 
energy changes into turbulent energy. It is not difficult to calculate that the vertical 
turbulent energy A ux in this system is 

- 

-- 

n = Plog(AlL')2 (6AtI-l Tr: - (r2)211 (10) 
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where Ax is the horizontal step and At is the time step of the numerical model. If 
waves with an angle of about 120" a t  the crest are considered critical, then the esti- 
mate r , ~ ;  - 3-4 holds. This method of estimating and also the entire proposed para- 
meterization of wave breaking cannot be accepted as final recommendations. Certainly, 
the initial phase of the inception of instability is described by (5a-d) themselves, but 
precisely these situations must be eliminated, otherwise a computational instability 
explodes. 

An alternative criterion for defining the interface instability is to compare the local 
vertical acceleration wt with gravitational acceleration g .  

Interface and bottom friction 

The coefficient of turbulent viscosity at  6 = 0 reduces to zero owing to (9). Never- 
theless, at  the surface tangential friction rs does exist. We assume that this friction 
is proportional to the square of the local tangential velocity. Since the friction forces 
acting on the surface from above and from below are equal, it  is easy to obtain 

(11) 

where Au, = (u+ - u-) + r,IZ(w+- uj-) (u* and w* are the velocity components immedi- 
ately above and below the int,erface respectively). A very simple assumption which 
can be made here is that the local tangential velocity profile above the interface is 
described by the logarithmic law. This leads to 

7s = P a k  I Au, I cs, 

C, = K2[ln (z+/z,)]-2, (12) 

where z, is the interface roughness parameter and z+ is the height corresponding to 
the velocity (u+, UI+).  For such a simple resistance model, the local roughness of the 
water surface under natural conditions is produced by high frequency wave com- 
ponents whose phase velocity is usually much smaller than the local air velocity. 
Assume that z, is determined by the characteristic height of these waves (Kitaigorod- 
sky 1970, p. 46): 

2, = & h,. (13) 

If w,. belongs to the inertial subrange, then i t  follows from (6) that z, N &a-*Z,. 

reduces to the transformation 
Parameterization of the surface friction on the basis of the proposed assumptions 

Pku&=*O+% Pku'&=*O-,%T!+ (14) 

which ensures continuity of the tangential force across the interface. 

water surface and the use of the approximation 
Simulation of laboratory experiments often permits the assumption of a smooth 

2, = m, V( rS /Pa) -4  (15) 

where m, is a constant of order 10-l. 
To realize a steady solution for the mean longitudinal velocity, this component is 

assumed to decay at  the lower boundary of the domain. TO be specific, it is supposed 
that a little below the level z = - fIw there is the bottom boundary layer. The bottom 
friction ku,J 5=-H,  is calculated from the formula 

r b  = ku, 1 Y=-H, = u b  1 u b  1 c b ,  (16) 
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where c b  is the usual resistance coefficient above a rough surface and u b  is the longi- 
tudinal bottom velocity. The case of finite depth has been chosen for simplicity. I n  
deep water, we are obliged to take the Coriolis force into account or to  parameterize 
the developing Ekman layer. 

Turbulent energy inJEux due to ulave breaking 

Neglecting the turbulent energy production a t  high frequency surface elements 
generally leads to the relation ke ,  = 0 for 5 = 0. This relation, however, should be 
used only above the interface. Below it' there occurs a vertical flux e induced by wave 
breaking : 

It should be emphasized that these assumpbions are not very accurate because they 
do not allow for direct turbulence production due to the work done on the high fre- 
quency waves by frictional and pressure forces. 

kecJ5=+o = 0, kegl+O = pl~ln. (17 )  

Model equations and boundary conditions 

Since the method of describing the effects of eddy viscosity, which is based on (S), 
(9) and the equation for the evolution of the turbulent kinetic energy, is not very 
accurate, we drop some terms in the equation of motion and the terms due to transi- 
tion to the 5 co-ordinate in the equation for e. These simplifications arising from the 
considerations of numerical reality can be made only on the assumption that the ratio 
of the vertical and horizontal perturbation scales is sufficiently small. The set of 
equations finally takes the form (the averaging sign is left out) 

~t = ( -UU -p-'p + ku,  +SIT ) ,  -t (- uw + T t U  + T,UU + ~ , p - p  + ku,),, ( 1 8 ~ )  

( I S b )  ~ ' t  = ( - U U )  + ktL',), + ( - ZC'ILI + T t  Uj + T,UU~ - p-lp + ku?,)<, 

u, + (20 - T/,ufc = 0, 

Tt = Ul0 - U O 7 ,  - u;y;. 
- 

Here the net pressure is replaced by its deviation from 

(18c) 

(18d)  

the hydrostatic component 

(19) 

and 

Equations (18) are used together with the evolution equation for the turbulent energy: 

et = ( -  u e  + ke,), + ( - w e  + v t e  + y,u e + Ice,), + k(u; +uZ, +u>: + 21'25) -c ,  (21) 

where the dissipation c, like k [see (S)], is expressed in terms of e and I: 

e = (e/c)tZ-l (22) 

(c = 4.6 is an empirical constant, see Zilitinkevich 1970, p. 106). The above simplifi- 
cations are relevant only to  the terms which involve the turbulent viscosity. It seems 
inconsistent to retain the small terms when the description of turbulence is so in- 
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accurate. Computations indicate that these simplifications in fact have little influence 
on the results. 

The set of equations (18) and ( 2 i )  may be solved in a ‘rectangular’ region with hori- 
zontal length L and height H,+I€w. Along the x axis, we assume periodicity with 
period L of all unknown functions and the required derivatives. This means that we 
take into account only the waves with length Lln,  where n is an integer. This con- 
straint is inevitable in modelling a real process. Simulation of laboratory experiments 
may involve modelling real boundary conditions, but this will increase the amount of 
computation considerably. 

At the upper boundary of the region we assign a turbulent momentum flux T and 
a turbulent energy defined by T and also assume vanishing of the vertical velocity 
and pressure perturbations: 

ku, = p ; l r ,  e = c p ; l ,  u’= 0, p = 0 at < = H a .  (23) 

At the lower boundary the velocity perturbations vanish and we assign a turbulent 
energy defined by a turbulent momentum flux 7 6 :  

u = 0, u’= 0, e =crb a t  < =  - H  ZL‘. (24) 

The pressure p can be obtained by solving a second-order equatian (of the elliptical 
type). Therefore a t  the lower boundary of the region 6 = - H,L, yet another boundary 
condition, for P, is obtained through substitution of (14) into a finite-difference 
analogue of (1 8). 

5. Vertical flux of momentum and energy 
Considering the air flow to be quasi-st,eady, we average ( 1 8 a )  over the interval 

The sum within the brackets is independent of the height in the layer (0 ,  Ha).  The first 
four terms in ( 2 5 )  decrease with height and for 6 > Ha there remains the term ku,, 
which is equal to the moment u’w’ calculated in terms of 5. According to  ( 7 ) ,  this 
moment is equal to  that found a t  a fixed value of z ,  i.e. to  frictional stresses in the 
usual sense. After substitution of the vertical velocity E = ZL‘ -?it - rixu measured 
from the interface, (25) can be written in the form 

- 

- - -  
py ,  - GU -I- k u j  = 7. (26) 

It is clear that the vertical momentum flux in terms of < is due to the pressure forces, 
the velocity field (to be described individually) and the eddy viscosity. Taking into 
account the kinematic conditions z? = 0 and liu, = rS at the interface, so that momen- 
tum is transferred to the water only by pressure forces and surface friction, we obtain 

- 
py,+;js = T a t  < = 0. (27) 

If air flow is assumed to be quasi-steady and homogeneous, ( 1  8) can also be used to 
obtain the formula for the energy flux W, through the interface: 

w, = py,  + 210 7s + “0 ?Ix T?j, (28) 

where the first term corresponds to energy transport by the vertical pressure forccs, 
whereas the second and third terms are due to  tangential friction. 
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The contribution of each term to (26), (27) and (28) may vary depending on the 
resolution adopted. Therefore the question of the contributions of normal and tangen- 
tial forces and two methods of energy transfer from one medium to the other in the 
presence of the perturbation spectrum cannot be addressed without specifying the 
boundaries of spectral intervals. 

6. Example of the numerical calculations 
The proposed set of equations is intended for calculating the evolution of wind- 

induced waves. This major task requires that very stringent demands on the accuracy 
of the finite-difference scheme be met and involves much computer time. A possible 
method of testing the feasability of the model with a smaller amount of computations 
is to simulate laboratory experiments. For this purpose, we have assembled data 
from the laboratory experiments by Stewart (1970), who measured the velocity dis- 
tribution in a wind-water tunnel over waves with a wavelength L = 40.8 cm and a 
height a = 0.64 cm. The water depth was 21 cm, the phase velocity C, = 79.6 cm/s 
and the wavenumber lz = 0.155 cm-l. It required 3.5 s for a wave to travel the 274 cm 
distance from the wave maker to the instruments. Over this distance there occurred 
above the waves a boundary layer with a height of about 8 cm, wherein measure- 
ments were made. Stewart confined himself to the study of wave-induced perturbations 
in the air flow above waves. The simplest way to simulate this experiment might be to 
solve (18) and (21) above a water-wave surface. However, from technical considera- 
tions, we preferred to solve a general problem for a two-layer fluid including (1 8) and 
(21) supplemented by the hypotheses (8), (9), ( l l ) ,  (16) and (22) with boundary con- 
ditions (23) and (24). The length of the int,egration area was selected to be equal to the 
wavelength, t'he height Ha above the surface in different versions was taken to be 
from 10 to 15 cm and the depth was 15 cm (see table 1) .  At the beginning we introduced 
one travelling wave using the formulae of small amplitude wave theory and a logarith- 
mic velocity dist'ribution in the upper region. The waves in Stewart's experiment 
were almost smooth. In  this case, the effective roughness is due to the processes in a 
viscous sublayer, which requires much supplementary effort if it  is to be simulated 
in the framework of the present model. Therefore the roughness parameter here was 
estimated using (15) with the coefficient m, = 0.23 defined from Stewart's profile 
measurements. 

For 1-2 s, mutual relaxation of the velocity and pressure fields occurred, whereupon 
the picture involved waves with certain fluctuations. Despite the small integration 
time, the amount of computation in this problem was rather large. This was caused 
partly by the comparatively small time step (from 0.001 to 0.01 s) used in the 
computations but mainly by the necessity to solve an elliptical equation for the 
pressure at each step. During the integration period (usually 5.1 s )  the net energy, 
which was equal to the sum of the kinetic energy 

and the potential energy 



The numerical simulation of wind-wave interaction 571 

zi* = 3.36 cm/s w* = 6.71cm/s 

Horizontal step (cm) 4-08 2.04 
Number of nodes along horizontal 10 20 
Vertical step (cm) 1 0.5 
Height Ha (cm) 15 10 
Number of levels in air 15 20 
Depth H, (cm) 15 15 
Number of levels in wat,er 15 30 
Time step (9) 0.01 0.00125 

Potential energy (erg/cm2) 
Wave phase velocity (cm/s) 78.6 79.4 

t = O s  101 100 
t = 2.5 93 93 
t = 5.0 s 97 88 

t = O s  127 174 
t = 2.5 9 136 174 
t = 5 . 0 s  130 164 

Kinetic energy (erg/cm2) 

TABLE 1 

z>* = 8.33 cm/s 

2-04 

0.5 
20 

10 
20 
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30 
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0.001 

100 
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86 

227 
227 
215 

decreased by several per cent (see figure 2).  Apparently, this reduction is largely due 
to the dissipative character of the scheme. The wave shape was conserved with a 
high degree of accuracy. This is illustrated in figure 3 ,  which presents wave spectra 
for two times. It is clear that, as in Stewart's experiment, practically all of the energy is 
contained in the dominant mode. Certainly, the waves were far from breaking in all 
versions of the calculation. 

An attempt has been made to  simulate wave evolution for v* = 3.36 cm/s by 
integrating the set of equations over a period of 60 s (this required 6000 time steps). 
Here the wave energy slowly decreased, but the general picture remained unchanged. 
Unfortunately, the errors involved in approximating the time derivatives in all cases 
obscured natural accumulation of the wave energy. The wave phase velocity, which 
is controlled by the velocity of crest displacement, coincided to  a very good accuracy 
with the experimental value regardless of the wind velocity and method of integration 
with respect t o  time, the deviations usually being within 1 yo. 

After 1-2 s, the structure of disturbance in the air also remained approximately the 
same. This is illustrated in figure 4, which gives the distribution of the amplitudes 
@ and W- of the wave-induced perturbations in the air normalized by auz /v  us. the 
wavenumber k for v* = 8-33 cm/s. The curves apply to different heights with respect 
to the mean level. Transition from the 5 to the z co-ordinate was performed using 
linear interpolation. The two sets of curves obtained for different times are somewhat 
different in detail, but the resemblance between them is obvious. The longitudinal 
velocity profiles above the waves together with Stewart's experimental data are 
shown in figure 5, which indicates that  the shape of the profiles and the character of 
their differences for the trough and crest of a wave were simulated fairly satisfactorily. 

If, on average, the air flow does not accelerate, then the net momentum flux due to 
the wave velocity components, pressure and eddy viscosity [equation ( Z S ) ]  must be 
independent of 5. The instantaneous profiles of these quantit<ies for u* = 8.33 cm/s are 
given in figure 6 (the positive values correspond to a downward momentum flux). 
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FIGURE 2. The time evolution of the energy components (erg/cmz) for v* = 6.71 cm/s. 
L €I, 

( 1 )  Kinetic energy in the air, E ,  a - - & (u2 + w2) dgdz. (2) Potential wave energy, 

(3) Kinetic energy in the water, E; = iL 2L 
(ua+w2) dcdx. (4) Net kinetic energy 
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FIGURE 3. Wave spectra for w* = 3.36 cm/s. 

(a) t = 2.0 8 ,  ( b )  t = 4.0 S. 
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FIGURE 4. Amplitudes of the air velocity modes normalized by aa,/v at different heights z for 
w* = 8.33 cm/s. (a) ,  ( b )  t = 2.5 s, (c), (d) t = 5.0 s. (1 )  z = 1.25 cm, (2) 2.25 cm, (3) 3.25 cm, 
(4) 4.25 cm, (5) 5.25 cm, (6) 6.25 cm, (7)  7.25 cm. 

On average, the absolute value of the wind-induced momentum flux is 20 times smaller 
than that of the turbulent momentum flux. The variation with height of kau/a< is 
largely compensated for by the term u8. The term gz changes very little. It should 
be emphasized here that in the case of a considerably smaller vertical step size the 
ratio of the momentum flux components at the surface may vary. It can be assumed 
intuitively that the vertical step at the surface must at  any rate be one order of mag- 
nitude smaller than the estimate of the critical-layer height. This required a non- 
uniform vertical step decreasing near the surface. This can be achieved by use of the 
vertical co-ordinate In 151 but this leads to significant complication of the numerical 
scheme. 

A spectral analysis of the predicted velocity fields permits investigation of the 
vertical distribution of phases and amplitudes of the main wave-induced perturbation 
modes. The results of such an analysis for three situations together with similar ex- 
perimental data obtained by Stewart are given in figures 7(a)-(c) .  Transition from 
the 5 to the z co-ordinate was performed by linear interpolation. All the results show 
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FIGURE 5. Wind velocity distribution in terms of 5: (1) v* = 3.36 crn/s, (2) v* = 6.71 cm/s, 
(3) q,, = 8.33 crn/s. The curves correspond to predicted wind velocities. In  groups 2 and 3, 
the left-hand curve is above a trough, the right-hand curve is above a crest and the middle 
curve is averaged over 0 < 5 < 1. In group 1 ,  these curves are coincident. The points are 
Stewart’s (1970) measurements: 0, above a trough; 0,  above a crest. 
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FIGURE 6. Friction component profiles in terms of 5 for 5 > 0 [see (26)]. w* = 8.33 cm/s. 
( 1 )  u6. (2) ph,. (3) k & / a [ .  (4) The sum of (1)-(3). Positive values correspond to a downward 
momentum flux. 
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FIGURE 7 (a) .  For legend see p. 577. 

that the computation simulates satisfactorily the order of magnitude and some other 
features of the velocity field above waves. The appreciable deviations in the upper 
part of the profile of 4-2 in figure 7 ( a )  (v* = 3.36 cm/s) can, apparently, be explained 
by the fact that the last experimental point, is outside the boundary layer. 

Experimental data do not confirm a deep minimum in % in the neighbourhood of 
the critical layer for v* = 6.71 cm/s (figure 7 b ) .  This minimum is not so pronounced 
for v* = 8-33 cm/s (figure 7c).  The difference between these results is probably due 
to poor vertical resolution and poor location of the real minimum relative to the nodes 
of the finite-difference grid. Incidentally, this remark may also apply to experimental 
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FIGURE 7 ( b ) .  For legend see next page. 

data. Interpolation is responsible for certain errors in the computation. It is remark- 
able that in the region of the minima the curves are in better agreement with Davis's 
(1970) theoretical results used by Stewart. Generally, the phase shift is consistent with 
experiment. 

Examples of the instantaneous velocity fields, pressure and turbulent energy for 
v* = 8.33 cm/s a t  t = 5.0 s are given in figures 8 and 9. In  the air, the pressure varia- 
tions appeared to be of the same order of magnitude to the accuracy adopted in the 
iteration scheme of the pressure calculation, therefore the field p ( x ,  5, t )  incorporates 
dynamically insignificant single-step perturbations. In figure 9 (a ) ,  these perturbations 
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FIGURE 7.  Instantaneous profiles of the non-dimensional amplitudes and pliases as fuiictions 
of the non-dimensional height zt**/v at t = 5. ( l ) ,  ( 2 )  Amplitudes and phases of the longitudinal 
velocity component. (3), (4) Amplitudes and phases of the vertical velocity coniponcnt. 0 ,  
calculated; 0, experimental; ---, height of a crest. (a )  r* = 3.30 cni/s, ( b )  i'* = 6.71 cin/s, 
(c) V* = 8.33 cn1/s. 

are smoothed. For reasons not yet understood there usually occurred a small incre- 
ment in the pressure field p for 5 > 0 except at the upper level, where p = 0. In  the 
situation presented in figure 9(n), this increment is equal to 0.039 Pu'/m2. The figure 
shows deviations from this value. The discontinuity in the contours near the surface 
in figure 8 corresponds to the region of large gradients in the parameterizcdbountlsry 
layer. 
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FIGURE 8. Velocity distribution. I** = 8.33 cin/s, t = 5 s. (a) u component, ( b )  w component. 
In (a ) .  deviations froin the mean value in terms of 5 over the period are given in place of the 
net velocity. The mean velocity profile is show1 in figure 5 .  

7. Conclusion 
What might seem a formal technique - incorporation of a moving system of co- 

ordinates - turns out ultimately to  be of practical value because averaging the equa- 
tions in terms of 6 leads to results amenable to a straightforward interpretation. The 
undesirable property of 6, namely unsteadiness, does not appear to be very significant 
because the differences between 6 and x are attenuated at  a reasonable distance from 
the interface. This effect is due to a reduction with height in all gradients and vanishing 
of the statistical relationship of the velocity and pressure deviations to  the slopes and 
the velocity of the surface motion. Use of 6 and application of the G-averaging over 
an ensemble of similar wave situations do not necessitate presentation of the variables 
as the sum of wave and turbulent components. 
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FIGURE 9. Pressure and turbulent energy distribution. v* = 8.33 cm/s, t = 5 8. (a) Pressure: 
33-0.039 [(N/m2) x for 5 > 0 ;  p (N/m2) for 5 < 0 (for 5 > 0, p has been smoothed). ( b )  
Turbulent energy (k/ms) (for 0 < 5 < 1 em the height scale has been stretched). 

The objective of the mathematical modelling of wind-induced perturbations is the 
numerical modelling of the evolution of the wave spectrum owing to wind. The fore- 
going results do not permit the application of the proposed model without restrictions, 
but they do not remove the motivation for further steps. Numerically, simulation of 
wind-induced perturbations is no more laborious a task than simulation of the 
dynamic regime of the atmosphere (Smagorinsky 1974)) because to obtain a quasi- 
steady dynamic regime with approximately the same number of the degrees of free- 
dom in either case i t  is necessary to use 105-lo6 time steps. 

T t  might be interesting in a subsequent analysis to investigate the possibilities 
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offered by a number of modifications and improvements. Of these, the first might be 
an attempt to connect the numerical approach for tlie air to the analytical description 
of waves (this idea was suggested to the author by K. Hasselmann in a private dis- 
cussion). 

The proposed scheme may be improved by incorporation of a flow function which 
allows grid compression near t,he interface, where the energy flux towards the water 
is formed. An effective improvement might be achieved by writing the variables as 
Fourier series wit'h amplitudes and phases dependent on the vertical co-ordinate. 

In  some respects, the proposed numerical model is close to that used by Taylor, 
Gent & Keen (1976), Gent & Taylor (1976, 1977) and Gent (1977) ,  who performed 
very careful calculations of the dynamic structure of the flow above waves through 
reduction to a steady problem. Unfortunately, these results became available only 
after this paper had been completed. Most of the results above are extremely useful 
for further development of a mathematical model of wind-induced waves. A more 
thorough parameterization of water surface roughness seems to be feasible. 

The author is indebted to Prof. V. M. Brekhovskikh, Prof. A. S. Monin, Prof. G. I. 
Barenblatt, Prof. K. Hasselmann and Dr S. A. Kitaigorodsky for valuable discussions 
of the problems of simulating wind-induced perturbations. The author is also grateful 
to Prof. J. Sundermann and Dr B. A. Kagan for very important comments made after 
reading the ma.nuscript and wishes t o  extend his thanks to Mr E. V. Popov for assis- 
tance in preparing the English version of the paper and to Miss T. A. Babayeva for 
drafting the figures. 

Appendix. The numerical scheme 
A grid with horizontal and vertical spacings Ax and A[ was used to  solve (18) and 

(21) numerically. Both the velocity components u and ut as well as turbulent energy e 
were evaluated a t  the centre of the cell while the pressure was evaluated a t  its corners. 
The level 7 was calculated a t  the corners located nearest the interface (figure 10). 

Equations (18) and (21) can be written in the form 

where 
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A x  

FIGURE 10. Finite-difference grid. 

while the divergence operator applied to a vector field ( U ,  W ) ,  say, is given by 

D( U ,  W )  = G"( U )  + Gc( W ) .  

(Ut+l- u t ) (At)-' = - p ~ ' G " ( p )  +F$', 

D(u ,  w )  = 0. 

(A 10) 

(A 1 1 )  

(A 13) 

Using (A 9) and (A 10)) the finite-difference equations corresponding to (A 1)-(A 3) 
yield 

(u++l-wt) (At)-' = -pi'GS(p)+Fi9i U' 9 (A 12) 

Applying the operator D to the vector field (ut+l,wt+l) gives the finite-difference 
equation defining p :  

D(P-~G"(P), p-'GC(p)) = D(Fu + ut(At)-l, Fw + wt(At)-'). (A 14) 

Equation (A 14) is solved by the over-relaxation interaction method. The boundary 
values pi,o are found by substitution of the boundary conditions ui,o = Z L ' ~ , ~  = 0 into 
(A 11)  and (A 12). The iteration process was terminated when the condition 

max 1aPi,j[lPijl +pi,jAC(\F2'1+ lFkil)I-'l < P (A 15) 
i, i 

was satisfied (&pi, is the iteration pressure increment). ,u was usually chosen as 

finite-difference form: 
Using the continuity equation (A 3) it is possible to write (A 4) in the following 

k 

i+l  
7:+1 = 7: - AtACAX-1 (us, - uiPl, j), (A 16) 

where summation is performed over the region 6 < 0. 
Approximation of (A 7 )  and (A 8) gives 

. .  
F2 = [ - .iii+g, j ui-4, j + .ii+, j ~ i - 4 ,  j + ki+4, j ( ~ i + l ,  j - ui, j) (Ax)-' 

- ' i - 4 ,  j ( U i  -u i -~)  (AX)-' + gI(vi+l- 7i)I (Ax)-' 

+ [ - ui, j++Gi, j + A  + ui. i-4 ' i ,  i-4 + ' i ,  j+$(ui, j+l- ui, j )  (A<)-' 
- 4, j - $ ( ~ i ,  j - ui, j-1) (AC)-'I (A&', (A 17)  . .  

Fhl = [ - .iii+t, j ~' i+t ,  j + ct-4, j wi-4, j + ki++, j ( ~ i + l ,  j - u'i, j) (Ax)-' 
- ki-4, j ( ~ i ,  j - ~ i - 1 ,  j )  (AX)-'] (Ax)-1 

+ [-wi,j+t'i, j + t  + ~ i , j - ~ ' i , j - +  + ki,f+g(u'i,j+l-u'i, j)(AC)F1 

- k, j-*(wi, j - wi, j-1) (A&'] (A&', (A 18) 
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Ui++, j = i (U i ,  j +ui+l, j), 

%++, j = g(Ui+l, j+l + 'ui+l, j + ui+l, 5-1 + ui, j+l + 2ui, j + ui, j-l), 

wi, j++ = i i(Wi, j + w i ,  j+1), 

Wi, j++ = g(Wi-1, j + Wi-1, j+l+ 2Wi.  j + 'Wi, j+l + w i + l ,  j + wi+l, j+1), 

- %(?It 

- &(?I;-'+ rk) (ui, j + ui, j+1+ Ui+l, j + ui+l, j+1)* 

1 

1 - 
1 i t 1  + rZ) - Q(d+ r:-9 (%-I j + ZLi-1, j-1 + ui, j + ui, j+J, 

The terms in (A 17)  and (A 18)  describing the momentum transport through the 
interface 5 = 0 by viscous forces are calculated according to (1  1) .  The forms of (A 17)  
and (A 18)  ensure convergence of G to zero at  the interface [see the appropriate remark 
concerning (3)]. Subsequent construction of the finite-difference scheme for (A 5) is 
obvious. The time derivatives and all of the foregoing calculations were approximated 
using directional differences. One iteration was used every other step for the entire 
problem. 
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